Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.076
Filtrar
1.
Mar Drugs ; 22(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38535472

RESUMO

Cyanobacteria are among the oldest organisms colonizing Earth. Their great biodiversity and ability to biosynthesize secondary metabolites through a variety of routes makes them attractive resources for biotechnological applications and drug discovery. In this pioneer study, four filamentous cyanobacteria (Cephalothrix lacustris LEGE 15493, Leptolyngbya boryana LEGE 15486, Nodosilinea nodulosa LEGE 06104 and Leptothoe sp. LEGE 11479) were explored for their anti-inflammatory potential in cell and cell-free in vitro bioassays, involving different inflammatory mediators and enzymes. Extracts of different polarities were sequentially prepared and chemically characterized for their content of phycobiliproteins (PBPs) and carotenoids. HPLC-PDA analysis of the acetone extracts revealed ß-carotene to be the dominant carotenoid (18.4-44.3 mg/g) and zeaxanthin as the dominant xanthophyll (52.7-192.9 mg/g), with Leptothoe sp. LEGE 11479 and Nodosilinea nodulosa LEGE 06104, respectively, being the richest strains. The PBP profile was in accordance with the color presented by the aqueous extracts, with Leptolyngbya boryana LEGE 15486 being the richest in phycocyanin (204.5 µg/mg) and Leptothoe sp. LEGE 11479 the richest in phycoerythrin (78.5 µg/mg). Aqueous extracts were more effective in superoxide anion radical scavenging, while acetone ones were more effective in scavenging nitric oxide radical (●NO) and in inhibiting lipoxygenase. Acetone extracts also reduced ●NO production in lipopolysaccharide-stimulated RAW 264.7 macrophages, with the mechanistic study suggesting a downregulation of the inducible nitric oxide synthase expression. Nodosilinea nodulosa LEGE 06104 and Leptothoe sp. LEGE 11479 acetone extracts presented the lowest IC50 values for the mentioned assays, pointing them out as promising resources for the development of new multi-target anti-inflammatory therapies.


Assuntos
Acetona , Cianobactérias , Óxido Nítrico Sintase Tipo II , Anti-Inflamatórios , Carotenoides , Radicais Livres
2.
Bioorg Med Chem Lett ; 104: 129714, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522589

RESUMO

A series of new fluorinated dihydrofurano-napthoquinone compounds were sucessfully synthesized in good yields using microwave-assisted multi-component reactions of 2-hydroxy-1,4-naphthoquinone, fluorinated aromatic aldehydes, and pyridinium bromide. The products were fully characterized using spectroscopic techniques and evaluated for their anti-inflammatory activity using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Among 12 new compounds, compounds 8b, 8d, and 8e showed high potent NO inhibitory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values ranging from 1.54 to 3.92 µM. The levels of pro-inflammatory cytokines IL-1ß and IL-6 in LPS-stimulated RAW264.7 macrophages were remarkably decreased after the application of 8b, 8d, 8e and 8k. Molecular docking simulations revealed structure-activity relationships of 8b, 8d, and 8e toward NO synthase, cyclooxygenase (COX-2 over COX-1), and prostaglandin E synthase-1 (mPGES-1). Further physicochemical and pharmacokinetic computations also demonstrated the drug-like characteristics of synthesized compounds. These findings demonstrated the importance of fluorinated dihydrofurano-napthoquinone moieties in the development of potential anti-inflammatory agents.


Assuntos
Lipopolissacarídeos , Naftoquinonas , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Naftoquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Citocinas/metabolismo , Células RAW 264.7 , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II
3.
Nat Commun ; 15(1): 2698, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538595

RESUMO

Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.


Assuntos
Toxoplasma , Vacúolos , Animais , Humanos , Camundongos , Interferons/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Toxoplasma/metabolismo , Vacúolos/metabolismo
4.
PLoS One ; 19(3): e0299294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451983

RESUMO

Dendritic cell (DC) activation is marked by key events including: (I) rapid induction and shifting of metabolism favoring glycolysis for generation of biosynthetic metabolic intermediates and (II) large scale changes in gene expression including the upregulation of the antimicrobial enzyme inducible nitric oxide synthase (iNOS) which produces the toxic gas nitric oxide (NO). Historically, acute metabolic reprogramming and NO-mediated effects on cellular metabolism have been studied at specific timepoints during the DC activation process, namely at times before and after NO production. However, no formal method of real time detection of NO-mediated effects on DC metabolism have been fully described. Here, using Real-Time Extracellular Flux Analysis, we experimentally establish the phenomenon of an NO-dependent mitochondrial respiration threshold, which shows how titration of an activating stimulus is inextricably linked to suppression of mitochondrial respiration in an NO-dependent manner. As part of this work, we explore the efficacy of two different iNOS inhibitors in blocking the iNOS reaction kinetically in real time and explore/discuss parameters and considerations for application using Real Time Extracellular Flux Analysis technology. In addition, we show, the temporal relationship between acute metabolic reprogramming and NO-mediated sustained metabolic reprogramming kinetically in single real-time assay. These findings provide a method for detection of NO-mediated metabolic effects in DCs and offer novel insight into the timing of the DC activation process with its associated key metabolic events, revealing a better understanding of the nuances of immune cell biology.


Assuntos
Óxido Nítrico , Respiração , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Regulação para Cima
5.
Int J Biol Macromol ; 264(Pt 1): 130510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447847

RESUMO

Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 â†’ and →4)-α-D-GalpA-(1 â†’ 2,4)-α-L-Rhap-(1 â†’ as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.


Assuntos
Colite , Cucurbita , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/efeitos adversos , Pectinas/farmacologia , Pectinas/metabolismo , Anti-Inflamatórios/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo
6.
Drug Dev Res ; 85(2): e22173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38515272

RESUMO

New pyridazine and pyridazinone derivatives 3a-g, 4a-f, 6a, and 6b were designed and synthesized. Cell viability of all compounds was established based on the viability of lipopolysaccharide-induced RAW264.7 macrophage cells determined via the MTT assay. In vitro inhibition assays on human COX-1 and COX-2 enzymes were conducted to probe the newly synthesized compounds' anti-inflammatory activity. The half maximal inhibitory concentration values for the most active compounds, 3d, 3e, and 4e towards COX-2 were 0.425, 0.519, and 0.356 µM, respectively, in comparison with celecoxib. The newly synthesized compounds' ability to inhibit the production of certain proinflammatory cytokines, such as inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-6, and prostaglandin-E2, was also estimated in lipopolysaccharide-induced macrophages (RAW264.7 cells). Compounds 3d and 3e were identified as the most potent cytokine production inhibitors. The results of molecular modeling studies suggested that these compounds were characterized by a reasonable binding affinity toward the active site of COX-2, when compared to a reference ligand. These results might be taken into consideration in further investigations into new anti-inflammatory agents.


Assuntos
Lipopolissacarídeos , Piridazinas , Camundongos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Células RAW 264.7 , Piridazinas/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
7.
Biomed Pharmacother ; 173: 116379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452656

RESUMO

BACKGROUND: Microglia-mediated neuroinflammation is an important pathological feature in many neurological diseases; thus, suppressing microglial activation is considered a possible therapeutic strategy for reducing neuronal damage. Oxyimperatorin (OIMP) is a member of furanocoumarin, isolated from the medicinal herb Glehnia littoralis. However, it is unknown whether OIMP can suppress the neuroinflammation. PURPOSE: To investigate the neuroprotective activity of oxyimperatorin (OIMP) in LPS-induced neuroinflammation in vitro and in vivo models. METHODS: In vitro inflammation-related assays were performed with OIMP in LPS-induced BV-2 microglia. In addition, intraperitoneal injection of LPS-induced microglial activation in the mouse brain was used to validate the anti-neuroinflammatory activity of OIMP. RESULTS: OIMP was found to suppress LPS-induced neuroinflammation in vitro and in vivo. OIMP significantly attenuated LPS-induced the production of free radicals, inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines in BV-2 microglia without causing cytotoxicity. In addition, OIMP could reduce the M1 pro-inflammatory transition in LPS-stimulated BV-2 microglia. The mechanistic study revealed that OIMP inhibited LPS-induced NF-κB p65 phosphorylation and nuclear translocation. However, OIMP did not affect LPS-induced IκB phosphorylation and degradation. In addition, OIMP also was able to reduce LPS-induced microglial activation in mice brain. CONCLUSION: Our findings suggest that OIMP suppresses microglia activation and attenuates the production of pro-inflammatory mediators and cytokines via inhibition of NF-κB p65 signaling.


Assuntos
Microglia , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Linhagem Celular , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
8.
J Clin Immunol ; 44(3): 77, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451335

RESUMO

PURPOSE: To assess the role of the interleukin (IL)-17 A/IL-17 receptor A (IL-17RA) in Kawasaki disease (KD)-related coronary arteritis (CA). METHODS: In human study, the plasma levels of IL-17 A and coronary arteries were concurrently examined in acute KD patients. In vitro responses of human coronary endothelial cells to plasma stimulation were investigated with and without IL-17RA neutralization. A murine model of Lactobacillus casei cell-wall extract (LCWE)-induced CA using wild-type Balb/c and Il17ra-deficient mice were also inspected. RESULTS: The plasma levels of IL-17 A were significantly higher in KD patients before intravenous immunoglobulin therapy, especially in those with coronary artery lesion. The pre-IVIG IL-17 A levels positively correlated with maximal z scores of coronary diameters and plasma-induced endothelial mRNA levels of chemokine (C-X-C motif) ligand-1, IL-8, and IL-17RA. IL-17RA blockade significantly reduced such endothelial upregulations of aforementioned three genes and inducible nitric oxide synthase, and neutrophil transmigration. IL-17RA expression was enhanced on peripheral blood mononuclear cells in pre-IVIG KD patients, and in the aortic rings and spleens of the LCWE-stimulated mice. LCWE-induced CA composed of dual-positive Ly6G- and IL-17 A-stained infiltrates. Il17ra-deficient mice showed reduced CA severity with the fewer number of neutrophils and lower early inducible nitric oxide synthase and chemokine (C-X-C motif) ligand-1 mRNA expressions than Il17ra+/+ littermates, and absent IL-17RA upregulation at aortic roots. CONCLUSION: IL-17 A/IL-17RA axis may play a role in mediating aortic neutrophil chemoattraction, thus contributory to the severity of CA in both humans and mice. These findings may help to develop a new therapeutic strategy toward ameliorating KD-related CA.


Assuntos
Arterite , Síndrome de Linfonodos Mucocutâneos , Humanos , Animais , Camundongos , Infiltração de Neutrófilos , Óxido Nítrico Sintase Tipo II , Receptores de Interleucina-17/genética , Células Endoteliais , Imunoglobulinas Intravenosas , Interleucina-17 , Leucócitos Mononucleares , Ligantes , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Quimiocinas , RNA Mensageiro
9.
Microb Pathog ; 190: 106610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484920

RESUMO

Jorge Lobo's disease (JLD) and lepromatous leprosy (LL) share several clinical, histological and immunological features, especially a deficiency in the cellular immune response. Macrophages participate in innate and adaptive inflammatory immune responses, as well as in tissue regeneration and repair. Macrophage function deficiency results in maintenance of diseases. M1 macrophages produce pro-inflammatory mediators and M2 produce anti-inflammatory cytokines. To better understand JLD and LL pathogenesis, we studied the immunophenotype profile of macrophage subtypes in 52 JLD skin lesions, in comparison with 16 LL samples, using a panmacrophage (CD68) antibody and selective immunohistochemical markers for M1 (iNOS) and M2 (CD163, CD204) responses, HAM56 (resident/fixed macrophage) and MAC 387 (recently infiltrating macrophage) antibodies. We found no differences between the groups regarding the density of the CD163, CD204, MAC387+ immunostained cells, including iNOS, considered a M1 marker. But HAM56+ cell density was higher in LL samples. By comparing the M2 and M1 immunomarkers in each disease separately, some other differences were found. Our results reinforce a higher M2 response in JLD and LL patients, depicting predominant production of anti-inflammatory cytokines, but also some distinction in degree of macrophage activation. Significant amounts of iNOS + macrophages take part in the immune milieu of both LL and JLD samples, displaying impaired microbicidal activity, like alternatively activated M2 cells.


Assuntos
Antígenos CD , 60579 , Imunofenotipagem , Hanseníase Virchowiana , Macrófagos , Humanos , Macrófagos/imunologia , Hanseníase Virchowiana/imunologia , Hanseníase Virchowiana/patologia , Masculino , Feminino , Citocinas/metabolismo , Antígenos de Diferenciação Mielomonocítica , Lobomicose/imunologia , Lobomicose/patologia , Pessoa de Meia-Idade , Adulto , Pele/patologia , Pele/imunologia , Idoso , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/imunologia
10.
Int Immunopharmacol ; 130: 111750, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442577

RESUMO

BACKGROUND: The most promising biologics tumor necrosis factor α (TNFα) inhibitors are effective in treating rheumatoid arthritis (RA) in only 50-70 % of the cases; thus, new drugs targeting TNFα-mediated inflammation are required. METHODS: Firstly, the drugs that could inhibit FLS proliferation and TNFα induced inflammatory cytokine production were screened. Secondly, treatment effects of the identified drugs were screened in collagen-induced arthritis (CIA) mouse model. Thirdly, the inhibitory effect of the identified drug, agomelatine (AOM), on TNFα induced inflammatory cytokine production and NF-κB activity were confirmed. Fourthly, bioinformatics was applied to predict the binding target of AOM and the binding was confirmed, and the already known inhibitor of target was used to test the treatment effect for CIA mouse model. Finally, the effect of AOM on signaling pathway was tested and on TNFα induced inflammatory cytokine production was observed after inhibiting the target. RESULTS: AOM effectively inhibited TNFα-induced NF-κB activation, NF-κB p65 translocation, and inflammatory cytokines production in vitro and was therapeutic against CIA. The mechanistic study indicated inducible nitric oxide synthase (iNOS) as the binding target of AOM. 1400 W, a known inhibitor of iNOS, could effectively treat CIA by decreasing iNOS activity and the levels of inflammatory cytokines. The inhibitory effect of AOM on TNFα-induced inflammation was further elucidated by 1400 W, or NF-κB p65 inhibitor JSH-23, indicating that AOM is therapeutic against CIA via iNOS/ERK/p65 signaling pathway after binding with iNOS. CONCLUSIONS: AOM is therapeutic against CIA via inhibition of the iNOS/ERK/p65 signaling pathway after binding with iNOS.


Assuntos
Acetamidas , Artrite Experimental , Reposicionamento de Medicamentos , Iminas , Naftalenos , Óxido Nítrico Sintase Tipo II , Fator de Necrose Tumoral alfa , Animais , Camundongos , Acetamidas/uso terapêutico , Artrite Experimental/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos Endogâmicos DBA , Naftalenos/uso terapêutico , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores
11.
J Pharmacol Sci ; 154(4): 225-235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485340

RESUMO

In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.


Assuntos
Heme Oxigenase-1 , Microglia , Animais , Camundongos , Heme Oxigenase-1/metabolismo , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aprendizagem da Esquiva , Citocinas/metabolismo , Interleucina-6/metabolismo , Comportamento Social , Tolerância Imunológica , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
12.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474629

RESUMO

Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) belongs to the Cupressaceae family and is native to East Asian regions. Essential oils extracted from the leaves, bark, branches, and roots of C. obtusa have both aesthetic and medicinal properties and are thus widely used. However, detailed analyses of the active ingredients of C. obtusa extract are lacking. In this study, the sabinene content in the hydro-distillation of C. obtusa leaf essential oil (COD) was analyzed using GC-MS, and the anti-inflammatory effect of COD was compared with that of pure sabinene. Cell viability was evaluated by MTT assay, and nitric oxide (NO) production was measured using Griess reagent. Relative mRNA and protein levels were analyzed using RT-qPCR and western blot, and secreted cytokines were analyzed using a cytokine array kit. The results showed that both COD and sabinene inhibited the expression of inducible nitric oxide synthase (iNOS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in lipopolysaccharide (LPS)-induced RAW 264.7 cells. COD and sabinene also reduced the production of pro-inflammatory cytokines interleukin (IL)-1ß, IL-6, IL-27, IL-1 receptor antagonist (IL-1ra), and granulocyte-macrophage colony-stimulating factor (GM-CSF). The anti-inflammatory mechanisms of COD and sabinene partially overlap, as COD was shown to inhibit MAPKs and the JAK/STAT axis, and sabinene inhibited MAPKs, thereby preventing LPS-induced macrophage activation.


Assuntos
Monoterpenos Bicíclicos , Chamaecyparis , Óleos Voláteis , Óleos Voláteis/farmacologia , Chamaecyparis/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Folhas de Planta/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
13.
Eur J Med Chem ; 267: 116223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38342013

RESUMO

Acute lung injury (ALI) is a clinically high mortality disease, which has not yet been effectively treated. The development of anti-ALI drugs is imminent. ALI can be effectively treated by inhibiting the inflammatory cascade and reducing the inflammatory response in the lung. Forsythia suspense is a common Chinese herbal medicine with significant anti-inflammatory activity. Using forsythin as the parent, 27 Forsythin derivatives were designed and synthesized, and the anti-AIL activity of these compounds was evaluated. Among them, compound B5 has the best activity to inhibit the release of IL-6, and the inhibition rate reaches 91.79% at 25 µM, which was 7.5 times that of the parent forsythin. In addition, most of the compounds have no significant cytotoxicity in vitro. Further studies showed that compound B5 had a concentration-dependent inhibitory effect on NO, IL-6 and TNF-α. And the IC50 values of compound B5 for NO and IL-6 are 10.88 µM and 4.93 µM, respectively. We also found that B5 could significantly inhibit the expression of some immune-related cytotoxic factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, B5 inhibits NF-κB/MAPK signaling pathway. In vivo experiments showed that B5 could alleviate lung inflammation in LPS-induced ALI mice and inhibit IL-6, TNF-α, COX-2 and iNOS. In summary, B5 has anti-inflammatory effects and alleviates ALI by regulating inflammatory mediators and inhibiting MAPK and NF-κB signaling pathways.


Assuntos
Lesão Pulmonar Aguda , Glucosídeos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Ciclo-Oxigenase 2/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Lipopolissacarídeos/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo
14.
Mar Drugs ; 22(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393056

RESUMO

In this study, we investigated for the first time the anti-inflammatory and immunomodulatory properties of crude polysaccharide (PSHT) extracted from green marine algae Halimeda tuna. PSHT exhibited anti-oxidant activity in vitro through scavenging 1, 1-diphenyl-2-picryl hydroxyl free radical, reducing Fe3+/ferricyanide complex, and inhibiting nitric oxide. PSHT maintained the erythrocyte membrane integrity and prevented hemolysis. Our results also showed that PSHT exerted a significant anti-edematic effect in vivo by decreasing advanced oxidation protein products and malondialdehyde levels and increasing the superoxide dismutase and glutathione peroxidase activities in rat's paw model and erythrocytes. Interestingly, PSHT increased the viability of murine RAW264.7 macrophages and exerted an anti-inflammatory effect on lipopolysaccharide-stimulated cells by decreasing pro-inflammatory molecule levels, including nitric oxide, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-α). Our findings indicate that PSHT could be used as a potential immunomodulatory, anti-inflammatory, anti-hemolytic, and anti-oxidant agent. These results could be explained by the computational findings showing that polysaccharide building blocks bound both cyclooxygenase-2 (COX-2) and TNF-α with acceptable affinities.


Assuntos
Clorófitas , Alga Marinha , Ratos , Camundongos , Animais , Antioxidantes/farmacologia , Óxido Nítrico/metabolismo , Alga Marinha/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular , Anti-Inflamatórios/farmacologia , Polissacarídeos/farmacologia , Lipopolissacarídeos/farmacologia , Clorófitas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
15.
Chem Biodivers ; 21(4): e202301115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334224

RESUMO

In this study, three diterpenoids (1-3), including one known compound (1), were isolated from the fruits of Vitex rotundifolia and their structures were determined via spectroscopic analysis. In lipopolysaccharide-stimulated RAW264.7 cells, these compounds dose-dependently decreased the intracellular reactive oxygen species levels and nitric oxide production compared to those in the control cells. At 25 µM/mL, these compounds also diminished the protein expression of the pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-6, with compound 3 exhibiting the most potent inhibitory effect.


Assuntos
Diterpenos , Vitex , Vitex/química , Antioxidantes/farmacologia , Plantas Tolerantes a Sal/metabolismo , Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Diterpenos/química , Óxido Nítrico/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo
16.
J Oral Pathol Med ; 53(3): 208-216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418292

RESUMO

BACKGROUND: Peripheral blood analysis is a non-invasive and low-cost technique of prognostic value for several diseases, including oral cancer. Considering the role of inducible nitric oxide synthase in tumor-associated inflammation, this study purposed to evaluate the influence of this enzyme on peripheral blood parameters and systemic inflammatory biomarkers during murine oral carcinogenesis. METHODS: A 50 µg/mL solution of 4-nitroquinoleine-N-oxide was provided to 15 C57BL/6J (Nos2+/+ ) and 16 B6.129P2-Nos2tm1Lau /J (Nos2-/- ) for 16 weeks. Animals were followed for 8 weeks after treatment. Blood samples and tongues were collected for hematological and histopathological analyses. Red blood cells, white blood cells, and platelet cell parameters were analyzed. The neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and the systemic immune-inflammation index were also calculated. The depth of invasion of all carcinomas was measured. RESULTS: Differences were found in several blood parameters. The depth of invasion in Nos2-/- was lower than in Nos2+/+ (p = 0.009), and strong correlations were found between depth of invasion and neutrophil count (ρ = -0.68, p = 0.017), lymphocyte count (ρ = 0.72, p = 0.011), neutrophil-to-lymphocyte ratio (ρ = -0.65, p = 0.025), platelet-to-lymphocyte ratio (ρ = -0.73, p = 0.013), and systemic immune-inflammation index (ρ = -0.67, p = 0.037) in Nos2-/- mice. CONCLUSION: Inducible nitric oxide synthase seems to have an important role in OSCC invasion and progression, which might be associated to alterations in immune-inflammatory cell dynamics evidenced by peripheral blood and systemic inflammatory biomarkers.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Carcinoma de Células Escamosas de Cabeça e Pescoço , Óxido Nítrico Sintase Tipo II/genética , Biomarcadores , Inflamação
17.
Fish Shellfish Immunol ; 147: 109469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423488

RESUMO

Inducible nitric oxide (NO) synthase (iNOS) is a key immune mediator for production of inflammatory mediator NO from l-arginine. Tight regulation of iNOS expression and enzyme activity is critical for proper NO productions under inflammation and infection conditions. However, the regulatory mechanism for iNOS expression and enzyme activity in fish remains largely unknown. Here, we show that extracellular ATP treatment significantly up-regulates iNOS gene expression and enzyme activity, and consequently leads to enhanced NO production in Cyprinus carpio head kidney macrophages (HKMs). We further show that the extracellular ATP-induced iNOS enzyme activity and NO production can be attenuated by pharmacological inhibition of the ATP-gated P2X4 and P2X7 receptors with their respective specific antagonists, but enhanced by overexpression of P2X4 and P2X7 receptors in grass carp ovary cells. In contrast, adenosine administration significantly reduces iNOS gene expression, enzyme activity and NO production in carp HKMs, and these inhibitory effects can be reversed by pharmacological inhibition of adenosine receptors with the antagonist XAC. Furthermore, LPS- and poly(I:C)-induced iNOS gene expression, enzyme activity, and NO production are significantly attenuated by blockade of P2X4 and P2X7 receptors with their respective specific antagonists in carp HKMs, while overexpression of P2X and P2X7 receptors results in enhanced iNOS gene expression, enzyme activity and NO production in LPS- and poly(I:C)-treated grass carp ovary cells. Taken together, we firstly report an opposite role of extracellular ATP/adenosine-mediated purinergic signaling in modulating iNOS-NO system activity in fish.


Assuntos
Adenosina , Carpas , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Carpas/metabolismo , Lipopolissacarídeos/farmacologia , Rim Cefálico/metabolismo , Macrófagos/metabolismo , Trifosfato de Adenosina/metabolismo , Expressão Gênica
18.
J Microbiol Biotechnol ; 34(2): 262-269, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213284

RESUMO

Panax ginseng has been widely applied as an important herb in traditional medicine to treat numerous human disorders. However, the inflammatory regulation effect of P. ginseng distillate (GSD) has not yet been fully assessed. To determine whether GSD can ameliorate inflammatory processes, a GSD was prepared using the vacuum distillation process for the first time, and the regulation effect on lipopolysaccharide-induced macrophages was assessed. The results showed that GSD effectively inhibited nitric oxide (NO) formation and activation of inducible nitric oxide synthase (iNOS) mRNA in murine macrophage cell, but not cyclooxygenase-2 production. The mRNA expression pattern of tumor necrosis factor alpha and IL-6 were also reduced by GSD. Furthermore, we confirmed that GSD exerted its anti-inflammatory effects by downregulating c-Jun NH2-terminal kinase (JNK) phosphorylation, the extracellular signal-regulated kinase phosphorylation, and signaling pathway of nuclear factor kappa B (NF-κB). Our findings revealed that the inflammatory regulation activity of GSD could be induced by iNOS and NO formation inhibition mediated by regulation of nuclear factor kappa B and p38/JNK MAPK pathways.


Assuntos
Medicamentos de Ervas Chinesas , NF-kappa B , Panax , Extratos Vegetais , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Vácuo , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Panax/metabolismo , RNA Mensageiro , Óxido Nítrico/metabolismo
19.
EMBO Mol Med ; 16(1): 132-157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177536

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening condition associated with Marfan syndrome (MFS), a disease caused by fibrillin-1 gene mutations. While various conditions causing TAAD exhibit aortic accumulation of the proteoglycans versican (Vcan) and aggrecan (Acan), it is unclear whether these ECM proteins are involved in aortic disease. Here, we find that Vcan, but not Acan, accumulated in Fbn1C1041G/+ aortas, a mouse model of MFS. Vcan haploinsufficiency protected MFS mice against aortic dilation, and its silencing reverted aortic disease by reducing Nos2 protein expression. Our results suggest that Acan is not an essential contributor to MFS aortopathy. We further demonstrate that Vcan triggers Akt activation and that pharmacological Akt pathway inhibition rapidly regresses aortic dilation and Nos2 expression in MFS mice. Analysis of aortic tissue from MFS human patients revealed accumulation of VCAN and elevated pAKT-S473 staining. Together, these findings reveal that Vcan plays a causative role in MFS aortic disease in vivo by inducing Nos2 via Akt activation and identify Akt signaling pathway components as candidate therapeutic targets.


Assuntos
Aneurisma da Aorta Torácica , Doenças da Aorta , Dissecção Aórtica , Azidas , Desoxiglucose , Síndrome de Marfan , Animais , Humanos , Camundongos , Aneurisma da Aorta Torácica/complicações , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Doenças da Aorta/complicações , Desoxiglucose/análogos & derivados , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Versicanas/metabolismo
20.
J Microbiol Biotechnol ; 34(3): 644-653, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213288

RESUMO

Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/ß and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.


Assuntos
NF-kappa B , Pinus , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Imunidade Inata , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...